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Abstract. We propose a Poisson-Boltzmann electrostatic theory for DNA/cationic lipid complexes modeled
as a stack of aligned DNA chains intercalated with lipid bilayers, a structure suggested by the recent X-ray
synchrotron studies of Radler et al. Poisson-Boltzmann theory is shown to predict that the isoelectric point
– where the DNA and cationic lipid charges are in balance – is unstable against absorption of extra DNA
or lipid material. The instability is caused by the entropy gain obtained following the release of small ions
inside the complex and is manifested by singular behavior of the rod-rod spacing near the isoelectric point.
We apply the theory to a discussion of the results of Radler et al.

PACS. 77.84.Jd Polymer; organic compounds – 87.22.Bt Membrane and subcellular physics and structure

1 Introduction

The phase behavior of DNA chains dissolved in aqueous
media has been extensively studied, partly because of bio-
logical interest and partly because the phase-diagram con-
tains fascinating liquid crystalline phases [1]. Studies [2]
of the interactions between DNA chains in aligned bun-
dles report that the dominant interaction between chains
at larger inter-chain spacings is electrostatic in nature, a
consequence of the high charge per unit length of DNA
(one charge per 1.7 Å). Recently, there has been a grow-
ing interest in the phase-behavior of aqueous mixtures of
DNA with cationic lipids in the context of non-viral gene
therapy strategies [3]. DNA can form complexes – called
“lipoplexes” – with cationic lipids which can be used as
vectors for injecting DNA into cells [4]. The cationic lipids
neutralize the negative charge of DNA and allow the com-
plex to approach the negatively charged surface of a cell
and fuse with the cell, which is somewhat more difficult
for naked DNA. Lipoplexes are undergoing clinical trials
to test their therapeutic efficacy [5]. More speculatively,
it is interesting from the viewpoint of the early evolution
of cells to explore spontaneous association between DNA
and lipids since this could give insight into the formation
of cellular membranes [6].

The stability of lipoplexes raises interesting physical
questions: why do they want to form in the first place
and what is the nature of the interaction between DNA
strands inside a lipoplex? The answer to the first ques-
tion seems obvious: the negatively charged DNA should
favor association with positively charged lipids. However,
both positively charged liposomes and negatively charged

a e-mail: bruinsma@physics.ucla.edu

DNA chains in solution are already closely surrounded
by clouds of oppositely charged small ions, the “counter-
ions”. Bringing DNA chains in contact with cationic lipids
is not by itself going to greatly reduce the free energy. The
second question arises because it would be natural to as-
sume that the internal structure of a lipoplex could be un-
derstood once we know the effective interaction between
DNA chains inside the lipoplex.

The internal structure of a lipoplex was studied in
recent X-ray scattering studies by Radler et al. [7]. A
solution of DNA chains extracted from λ-phage virus
was found to form lipoplexes when mixed with positively
charged liposomes (bilayer vesicles with radii in the range
of 500-700 Å). The liposomes themselves were mixtures
of neutral lipids (such as DOPC or DOPE) and cationic
lipids (such as DOTAP). Under salt-free conditions, this
ternary mixture contained micron-sized lipoplexes which
X-ray diffraction revealed to consist of well-organized
stacks of lipid bilayers intercalated by aqueous layers con-
taining parallel arrays of DNA chains. The structure of the
lipoplexes was thus similar to that of a three-dimensional
(3-D) smectic liquid crystal phase.

Radler et al. suggested that lipoplexes form through
a mechanism familiar in biochemistry, but less studied in
the physics literature, namely counter-ion release [8]. Ap-
plied to DNA/cationic lipid interaction, the counter-ion
release mechanism works as follows. Start with a single
DNA chain in solution. A certain fraction of its positive
counter-ions are highly confined to the neighborhood of
the chain (“Manning condensation” [9]). Similarly, a cer-
tain fraction of the negative counter-ions of cationic lipo-
somes are confined to the liposome surface. If the DNA
chain fuses with a cationic liposome, then equal numbers
of positive and negative counter-ions can be released to the
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bulk solution which allows them to increase their entropy.
This entropic contribution of the counter-ions to the free
energy is, as we will see below, of a magnitude compara-
ble to the direct electrostatic contribution, so the “hidden
physics” of counter-ion release could play an important
role for the organization of the lipoplexes.

This is an attractive suggestion but it appears to lead
to a difficulty: counter-ion release would seem to favor
the “isoelectric point”. The isoelectric point refers to that
particular DNA/cationic lipid mixing ratio for which there
is perfect charge compensation (see Fig. 1a). For a given
cationic lipid surface charge, the isoelectric condition im-
poses a value on the rod spacing which we will denote by
Riso. The isoelectric spacing is determined by the condi-
tion of charge neutrality of an array of DNA chains and
the two associated layers of cationic lipids. This is the

case if Riso ≡
|λ|/e

2σc
with λ the charge per unit length

of the DNA chains and with σc the cationic lipid surface
density (see Fig. 1). Riso is about 40 Å for the experi-
ments of Radler et al. If the mixing ratio deviates from
this isoelectric point, we should expect a certain amount
of either excess DNA or excess lipid material (in the form
of liposomes) to be in solution in phase coexistence with
the complex. Chemical equilibrium between the solution
with excess DNA or liposomes and the lipoplexes would
lead us to expect rod spacings which are somewhat less
than Riso for the case of excess DNA and rod spacings
which are somewhat greater than Riso for the case of
excess lipid. This was indeed observed but, surprisingly,
when the lipid/DNA mixing ratio was varied (while keep-
ing fixed the neutral/ionic lipid mixing ratio), the R spac-
ing appeared to undergo a discontinuous jump acrossRiso,
as if the lipoplex was trying to avoid the isoelectric point.
Since, away from the isoelectric point, at least some of
the bulk counter-ions must be confined to the lipoplex to
maintain local charge neutrality (see Figs. 1b and c), it
seems unclear how to interpret the apparent instability of
the isoelectric point in the light of counter-ion release. The
instability indicates that an isoelectric lipoplex has a high
chemical “affinity” for both DNA chains and cationic lipid
material. Isoelectric lipoplexes could be similarly “reac-
tive” at the macromolecular level for other charged macro-
molecules, like proteins, and the reactivity could affect
their fusion kinetics which may be important for the clin-
ical applications.

Another problem with lipoplexes concerns the nature
of the interaction energy between DNA rods inside a lipo-
plex. Suppose, as suggested by Radler et al., that we con-
sider the array of DNA chains as a two-dimensional (2-D)
lyotropic smectic, with the DNA chains as the smectic
lines and the lipid molecules as the embedding solvent.
Adding extra lipid to a lipoplex is then analogous to di-
luting a 3-D lyotropic smectic by adding solvent. When,
in the experiments of Radler et al., the lipid concen-
tration was significantly increased beyond the isoelectric
point (by increasing the amount of cationic liposomes), the
DNA spacing was found to saturate at a value of around
47 Å. Saturation of the layer spacings in 3-D lyotropic

z

x
x

(a)

R < R
iso

(b)

R > R
iso

(c)

Fig. 1. Geometry used in the calculation. A parallel array of
rods with spacing R in an aqueous medium is confined be-
tween two dielectric slabs separated by a distance D. The rods
are negatively charged, with mobile positive cations confined
within the two boundary plates at z = D/2 and z = −D/2.
Figure 1a shows the isoelectric point, where the cationic lipid
charge compensates the rod charge. Figure 1b shows the case
of excess DNA, and Figure 1c the case of excess liposome. The
structures are not drawn to scale: in Figure 1b, b is in reality
less than 0.1 of D while the liposome radius in Figure 1c should
be more than 10 times D.



R. Bruinsma: Electrostatics of DNA-cationic lipid complexes 77

smectics upon dilution is generally associated with a situ-
ation where longer-range attractive interactions compete
with shorter range (usually electrostatic) repulsive inter-
actions, leading to an optimal spacing [10]. Attempts to
swell much beyond this optimal spacing would produce
phase separation. If the same explanation also holds for
the saturation of the DNA chain spacing in the lipoplexes,
then there should exist a fairly long-ranged attraction
which competes with a shorter range electrostatic inter-
chain repulsion. Van der Waals attraction or membrane
deformation by the DNA chains indeed could produce
DNA-DNA attractions [11]. The chain-chain interaction
can be studied by analysis of the thermal diffuse contri-
bution to the X-ray diffraction peaks [12]. Salditt et al.
have analyzed the X-ray data of lipoplexes in this man-
ner [13], but (so far) only found evidence for a long-range
repulsion between the DNA chains. The saturation of the
rod spacing is thus presenting us with a second puzzle.

A third problem is the order of magnitude of these
rod-rod forces. In an earlier paper [14] we found that,
within the mean-field Poisson-Boltzmann theory, the elec-
trostatic force f(R) per unit length between two charged
rods inside a salt-free aqueous slab bounded by slabs with
a low dielectric constant should depend on their spacing

R as f(R) ≈
kBTD

lBR2
(for R � D, with D the spacing

between the lipid bilayers and lB the Bjerrum length (of
order 7 Å)). Both the order of magnitude of f(R) and the
dependence of f(R) on R are reasonably consistent with
the X-ray analysis of Salditt et al. [13]. If attractive forces
indeed play no important role, we would expect that the
equilibrium spacing could be found by comparing the re-
pulsive force f(R) to τ/R, with τ being the absorption
energy per unit length of a DNA chain on a pair of lay-
ers of cationic lipids. This absorption energy, as will be
shown below, is of order kBT/b (see Eq. (3.13)) with 1/b
the line density of rod charges. Using the quoted result
for f(R), the rod-rod spacing would be expected to be of
the order of bD/lB. For DNA, b is of order 1.7 Å and D is
of order 20 Å: the resulting rod-rod force spacing (about
5 Å) is much too short. The rod-rod repulsion would be
too weak to prevent continued absorption until R is of
order D when short-range forces like the hydration force
become important. This is clearly in disagreement with
experiment. Thus, even though the electrostatic repulsion
f(R) between the rods is probably important for long-
wavelength thermal fluctuations of the rods around the
mean spacing – as inferred from the analysis of thermal
diffuse X-ray diffraction – it apparently does not play a
significant role in determining the mean rod-rod spacing
itself! Thus, we also run into a puzzle if we assume that
repulsive forces of the form of f(R) determine the rod
spacing.

The formation of the DNA/lipid lipoplexes is clearly a
less simple matter then would appear at first sight. In this
paper we will study the electrostatic nature of lipoplexes
from the viewpoint that the dominant interaction is elec-
trostatic and for the simple model geometry of Figure 1.
We will focus on the case that the rod-rod spacings are

large compared to the rod diameter. This will allow us to
avoid treating the detailed architecture of DNA chains
and their association with cationic lipids and to focus
instead on constructing a simple, analytically tractable,
model which will let us examine the generic features of
the puzzling electrostatics of the lipoplex formation, in
particular the role of counter-ion release when a lipoplex
is in chemical equilibrium with excess DNA or excess li-
posome material. The price is that we are restricted to
lower surface concentrations of cationic lipids than those
used experimentally. The aim of the study is in fact not
so much to provide an analysis of the experimental results
but rather to gain theoretical insight into the underlying
physics and the “design criteria” of lipoplexes: what physi-
cal mechanism sets the rod spacing and what is the nature
of the internal electrostatic structure of a lipoplex?

With these caveats in mind, we can summarize the re-
sults of the model as follows. An isoelectric complex is
indeed found to have a high affinity for both DNA chains
and for cationic lipid material. The driving mechanism
is partial counter-ion release. If, for instance, a charged
rod enters an isoelectric complex from solution, then the
counter-ions of the rod still lower their electro-chemical
potential µ = eφ+ kBT ln c – with φ the electrostatic po-
tential and c the counter-ion concentration – even though
they must stay inside the complex (the counter-ions can-
not be released into bulk since this is forbidden by charge
neutrality). The reason is that, near the isoelectric point,
the concentration c of counter-ions inside a complex is still
significantly lower than in the Manning-condensed layer of
counter-ions near the rod. As a consequence, the entropic
contribution to the electrochemical potential is higher for
counter-ions inside a Manning layer. Counter-ions of a
rod entering the complex in fact both can reduce the en-
tropic contribution to their chemical potential and lower
the electrostatic contribution, since repulsive interactions
between counter-ions are weakened inside the complex as
the counter-ions can move away from each other upon re-
lease. The entropic free energy gain is further enhanced by
the fact that the condensed counter-ions on a rod suffer
1-D confinement, while in the complex they are only 2-D
confined.

When the number of excess rods inside the complex
starts to grow, the counter-ion concentration increases and
the corresponding free energy gain decreases until an equi-
librium spacing R∗ is reached. Within our model, we find
that on the DNA rich side of the isoelectric point, this
equilibrium spacing is given by:(

1−
R∗

Riso

)
∼=

(ΦDNA)
1
2ξ exp

{
−

[
ln

(
π2ξ2

4(1− ξ)2

)
+

2

ξ
ln(1− ξ)

]}
(1.1)

with ΦDNA the volume fraction of excess DNA in solution
(assumed small here) and with ξ = lB/b the Manning pa-
rameter (see Sect. 2). Note the singular dependence of the
rod spacing on the volume fraction: for typical values of ξ
(around 4.1) the rod spacing increases very steeply close
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to the isoelectric point ΦDNA = 0. This result is somewhat
reminiscent of the behavior of domain wall spacings near
a commensurate-incommensurate (CI) transition [15], but
unlike the CI transition, the line-line pair interaction plays
no important role in equation (1.1). The key is the depen-
dence of the adsorption energy per unit length τcomplex(R)
on the rod spacing R through the overall counter-ion en-
tropy which depends on R (see for instance Eq. (3.12)).

A qualitative understanding of the origin of equation
(1.1) can be obtained by considering the free energy of the
counter-ions. The average concentration of the counter-

ions inside the lipoplex must be c =
1

D

(
|λ|

eR
− 2σc

)
. The

reason is that the lipoplex as a whole must be charge neu-
tral so if we add the total charge per unit volume due to
the counter-ions, the cationic lipids, and the DNA chains
we must get zero. The entropic contribution to the free en-
ergy per unit length of a rod in the lipoplex due to counter-

ion release then is of the order of
kBT

b
ln

(
1−

R

Riso

)
us-

ing the fact that Riso ≡
|λ|/e

2σc
. On the other hand, let

λ∗ = λ/ξ be the well-known “Manning-renormalized” ef-
fective charge per unit length of a charged rod. Assume
that the rod is in a dilute solution of rods with a vol-
ume fraction Φ = D2/L2. The electrostatic self-energy
per unit length of a rod is then of the order λ∗2 lnL
(recalling that infinite rods have an electrostatic poten-
tial which depends logarithmically on distance). To ob-
tain chemical equilibrium between the rods in solution
and rods inside the lipoplex, we equate the counter-ion
free energy per unit length of rods inside the lipoplex
to the electrostatic energy per unit length of rods in so-
lution. Recalling that ξ = lB/b this condition leads to(

1−
R∗

Riso

)
∝ (ΦDNA)

1
2ξ , which gives us the singular

part of equation (1.1).
For the case of a lipoplex in contact with a dilute so-

lution of cationic liposomes, we find a stable rod spacing
which is essentially independent of the liposome concen-
tration: (

R∗

Riso
− 1

)
∼=

√
eD

4lc
(1.2)

with lc the Chapman length (defined in Sect. 2). The
reason for the discontinuity is again partial counter-ion
release. The negative counter-ions of a cationic liposome
are already constrained to move along a surface: there is
no “dimensionality effect”. However, since there are again
no counter-ions inside a perfectly isoelectric complex, the
counter-ions attached to a liposome still can greatly reduce
their electro-chemical potential by entering the complex.

The PB calculation which leads to equation (1.2) pro-
vides intuitive insight into the question why the rod-rod
spacing does not grow indefinitely when we increase the
lipid/DNA mixing ratio beyond the isoelectric point. Sat-
uration of the rod spacing is found to be due to the electro-
static repulsion between the lipid layers. Imagine a sand-
wich consisting of two flexible parallel surfaces of area L

L/ D

R*

Riso

(L/D)iso

Fig. 2. Dependence of the rod spacing R∗ on the lipid/DNA
ratio L/D, for fixed neutral/ionic lipid ratio, as predicted by
equations (1.1, 1.2). (L/D)iso is the isoelectric point and R∗iso
is the spacing at the isoelectric point.

by L that repel each other. Assume that the two surfaces
are held together by a certain number N of aligned rods of
length L, located in between the two surfaces. The rods lo-
cally fix the spacing between the two surfaces to be D. The
spacing R between the rods is adjustable. If the rods are
uniformly distributed over the sandwich, then R = L/N .
If we now reduce N , we must increase R to maintain the
uniform distribution. However, in the small N limit it is
energetically more favorable to collect all the rods in a
small part of the sandwich in an array with R finite, and
to allow the two surfaces in the remaining part of the sand-
wich to separate, leading to spacings large compared to D.
This mechanism applies even if the rods repel each other.
We find that it dominates for rod spacings large compared
to an effective Debye screening length. In that regime, the
cationic lipid material in one layer repels the other layer
in much the same way as the cationic lipid material in the
bilayer of a liposome repels the other side. The separa-
tion of the two surfaces in the toy model just discussed
corresponds to the formation of liposome material. This
mechanism competes with the counter-ion release effect.
The balance between these effects is represented by equa-
tion (1.2).

The combined dependence of the DNA spacing upon
the lipid-to-DNA mixing ratio predicted by equations (1.1,
1.2), is shown in Figure 2. We conclude that the DNA
spacing indeed appears to avoid the isoelectric point: the
instability of the isoelectric point is consistent with PB
theory through the mechanism of counter-ion release.

We now will define our model (in Sect. 2) and then
proceed to substantiate, in Sections 3 and 4, the above
claims. We finish in Section 5 with a summary, a discussion
of the limitations of the model, and possible experiments
which could be done to test the validity.
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2 Poisson-Boltzmann theory of model
lipoplexes

Based on the experiments of Radler et al., we model
the lipoplex as a parallel array of cylindrical rods with
a negative charge per unit length equal to −λ, and a
rod-rod spacing R (see Fig. 1a). The rods are oriented
along the y-axis with the center-lines located at [x =
± (m + 1/2)R, z = 0] (m = 0, 1, 2,... is an integer) and
they lie inside an aqueous slab of thickness 2D and a high
dielectric constant εw. The slab is sandwiched between
two semi-infinite volumes whose dielectric constant is as-
sumed to be very small compared to that of water. The
aqueous slab contains either positive counter-ions (for the
case of excess liposome) or negative counter-ions (for the
case of excess DNA) to assure charge neutrality.

Localized on the two boundary planes of the slab at
z = ±D/2 are equal amounts of mobile, positive charges
with an average surface concentration σ(x) which can vary
with position x. They represent a 2-D solution of cationic
lipids in a matrix of neutral lipids. We will exclude any
specific association between DNA and cationic lipids (such
an association would depend on the molecular architecture
of the DNA and the lipids, which – as mentioned – is be-
yond the scope of the present calculation). By symmetry,
the surface number density of cationic lipids must be the
same on the two planes while, again for symmetry reasons,
σ(x) = σ(−x).

The lipoplex is assumed to be in chemical equilibrium
with a salt-free solution containing either excess DNA
rods, or excess lipid material (in the form of cationic li-
posomes), but not both. In other words the gain in free
energy upon self-assembly of the lipoplex is sufficiently
large that lipoplexes in a DNA/cationic lipid solution will
continue to form until either the supply of lipid or the
supply of DNA has run out. In the first case (see Fig. 1b),
chemical equilibrium requires that the number of DNA
chains inside the lipoplex is somewhat greater than that
at the isoelectric point. The lipoplex will then contain only
positive counter-ions to maintain charge neutrality. In the
second case (see Fig. 1c), the amount of cationic lipid ma-
terial inside the complex exceeds the amount required for
isoelectricity, and the lipoplex will contain only negative
counter-ions. The lipoplex thus will never contain both
positive and negative counter-ions. We can come to the
same conclusion that the slabs cannot contain both posi-
tive and negative counter-ions by noting that we could re-
move pairs of positive and negative counter-ions from the
lipoplex without violating charge neutrality and transfer
them to the (salt-free) solution where they would gain a
free energy of order kBT ln V , with V the system volume.
In the limit V → ∞ this would always off-set any finite
loss in electrostatic enthalpy suffered by the removal of
the counter-ions from the lipoplex.

Let c(r) be the number density of either positive or
negative counter-ions inside the slab. Charge neutrality

and translational invariance require that:

± e

∫ D/2

−D/2
dz

∫ R/2

−R/2
dx c(x, z) + 2e

∫ R/2

−R/2
dx σ(x) = |λ|

(2.1)

with the upper sign referring to excess DNA and the lower
sign to excess lipid. The electrostatic potential φ(x, z) and
the number density c(x, z) must obey Poisson’s equation:

∂2φ(x, z)

∂x2
+
∂2φ(x, z)

∂z2
= ∓

4πe

εw
c(x, z). (2.2)

In Poisson-Boltzmann (PB) theory [16], it is assumed that
both the (monovalent) lipid and counter-ion concentra-
tions obey the Boltzmann distribution:

σ(x) = σ0 exp

[
−

(
eφ(x, z = ±D/2)

kBT

)]
c(x, z) = cB exp

[
∓

(
eφ(x, z)

kBT

)]
. (2.3)

Here, σ0 and cB are constants independent of position.
The constant cB is determined as follows. The counter-

ions inside the lipoplex must be in chemical equilibrium
with those in solution. If we set the electrostatic poten-
tial to zero in the bulk solution (away from excess DNA
or cationic liposomes) then the constant cB must corre-
spond to the ion concentration in solution. The constant
σ0 is determined by the following condition. For the case
of excess DNA, the lipoplexes have exhausted all the lipid
material. The average cationic lipid surface concentration
then must be equal to σc, the (surface) concentration of
cationic lipids of the liposomes from which the DNA/lipid
solution was prepared. We thus must demand:∫ R/2

−R/2
dx σ(x) = Rσc. (2.4)

To find σ0 for the case of excess liposomes, recall that the
lipoplexes are produced by the fusion of a certain num-
ber of liposomes whose (surface) concentration of cationic
lipid was σc. This means that equation (2.4) must be valid
as well for a newly formed lipoplex. There are now two
possibilities: if the lipid molecules are (even weakly) hy-
drosoluble then lipid material can be exchanged between
the liposomes and the lipoplexes. In that case, σ0 is de-
termined by the condition that the cationic lipids in the
lipoplexes and in the liposomes have the same electro-
chemical potential so equation (2.4) would not be valid. If
the lipids are insoluble, as we will assume in this paper,
then equation (2.4) remains valid also for excess liposomes.

It is helpful to define at this point a number of char-
acteristic length scales. The Bjerrum length is defined as
lB = e2/εwkBT (equal to 7.1 Å at room temperature for
εw ≈ 80); it is the separation between two unit charges
when their Coulomb energy is equal to kBT . The spac-
ing between the rods at the isoelectric point is related
to the mean cationic lipid surface concentration σc by
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Riso ≡
|λ|/e

2σc
, as noted earlier. Note also that |λ|/e = 1/b.

From σc we can also construct another important length

scale namely lc =
εwkBT

e2σc
, which is the Chapman length.

For a 2-D charged surface, the Chapman length is approx-
imately the width of the layer of condensed counter-ions
near the surface. We can write the mean cationic lipid sur-
face density in terms of the Chapman and Bjerrum lengths

as σc =
1

lBlc
and the isoelectric spacing asRiso =

ξ

2
lc. The

Manning parameter ξ = lB/b is the ratio of the charac-

teristic monovalent rod electrostatic energy

(
e2

εwb

)
over

the thermal energy kBT . For ξ larger than one, the DNA
chains are surrounded by a sheath of counter-ions screen-
ing the bare charge such that the renormalized charge is
a fraction 1/ξ of the bare charge [17].

If we insert equation (2.3) into equation (2.2) we re-
cover the well-known Poisson-Boltzmann (PB) equation:

∂2φ(x, z)

∂x2
+
∂2φ(x, z)

∂z2
= ∓

4πe

εw
c0e
∓

(
eφ(x,z)
kBT

)
. (2.5)

The mixed boundary conditions for equation (2.5) at z =
±D/2 involving both the electrostatic potential and the
normal electrical field are found by combining Gauss’ Law
with equation (2.3):

∂φ(x, z = ±D/2)

∂z
= ±

4πeσ0e
−

(
eφ(x,z=±D/2)

kBT

)
εw

· (2.6)

(We neglect in Eq. (2.6) the electrical displacement outside
the aqueous slab; in an earlier paper [14] (I) it was shown

that this is a reasonable assumption provided R �
εw

εl
D

with εl the lipid dielectric constant.) The cylindrical rods
are assumed to have a surface charge density λ/πD so
the normal component of the electrical field at the rod

surface is En = −
4λ

εwD
, thereby providing a complete set

of boundary conditions.
After solving the PB equation with these mixed, non-

linear boundary conditions, we must compute the PB free
energy F (R) per rod per unit length:

F (R) =

∫ R/2

−R/2
dx

∫ D/2

−D/2
dz

{
kBTc(x, z)[ln(c(x, z)/c0)− 1]

±
1

2
ec(x, z)φ(x, z)

}

+2

∫ R/2

−R/2
dx

{
kBTσ(x) ln(σ(x)/σL)

+kBT (σL − σ(x)) ln(1− σ(x)/σL)

+
1

2
eσ(x)φ(x, z = D/2)

}

+
λ

2πD

∮
dsφ(s). (2.7)

The first terms in curly brackets constitute the entropic
contribution of the counter-ions to the free energy and
their electrostatic energy; c0 is the number concentration
of bulk solvent molecules. The next set of terms involve the
entropic and electrostatic contributions of the lipids, with
σL the total surface number concentration of lipids so σ(x)
and σL−σ(x) are the surface number densities of charged
and neutral lipids, respectively. We are assuming that the
surface concentration of cationic lipids is low enough to
allow usage of ideal-mixing theory. The last term is the
electrostatic energy of the rods with the integral over s
running over the rod circumference.

The calculation outlined so far can be performed for
any R, so it does not select any particular spacing be-
tween the rods. To select the R value, we impose the
condition that the free energy of the lipoplex cannot be
lowered by absorbing or releasing either DNA chains or
liposomes. In other words, we are demanding the equal-
ity of chemical potentials for either: (i) DNA inside the
lipoplex and excess DNA; or (ii) lipid material inside the
lipoplex and in the excess liposomes. This equilibrium
condition translates into the following constraints. For
case (i) (excess DNA) let the free energy of the lipoplex
be NF (R) with N the number of chains in the lipoplex
(and with F (R) computed from Eq. (2.7)). Now insert
one more chain while keeping the total lipoplex surface
area A = 2RNL fixed (with L the length of the rods).
We must impose this condition since the lipoplex has al-
ready exhausted all of the lipid material. The free energy
cost per unit length for this chain-insertion operation is

τcomplex(R) =
∂

∂N
[NF (R)]Fixed A, or:

τcomplex(R) = F (R)−R
d

dR
F (R). (2.8)

Our stability condition is satisfied provided τcomplex(R)
equals the free energy per unit length τsolution of a DNA
chain in the bulk solution, computed within PB theory.
We may consider τcomplex(R) as the chemical potential of
DNA.

For case (ii) of excess liposome, let L′ = NR be the lat-
eral size of the array so NF (L′/N) is the free energy of the
lipoplex. The free energy cost per unit area γcomplex(R)
required to introduce extra lipid material is found by tak-
ing the derivative of NF (L′/N) with respect to L′ while
keeping the number N of chains fixed. since the lipoplex
has exhausted the supply of DNA chains. The result is
that:

γcomplex(R) =
dF (R)

dR
(2.9)

which we can consider as the chemical potential of lipid
material (at fixed neutral/ionic lipid mixing ratio). Sta-
bility of the lipoplex requires that γcomplex(R) equals the
free energy per unit area of the DNA-free liposome, again
to be computed within the PB approximation.
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Limit of low cationic lipid concentrations

The program outlined above for the calculation of the
rod spacing still presents a formidable analytical challenge
since it requires solution of a non-linear [18] partial differ-
ential equation with complex, mixed non-linear boundary
conditions (see Eq. (2.6)). We will restrict ourselves in this
paper to studying the case of low cationic lipid concentra-
tions, since this allows analytic treatment. To examine this
regime, first define the z-averaged potential φ(x):

φ(x) =
2

D

∫ D/2

0

dzφ(x, z). (2.10)

Integrating the PB equation (Eq. (2.5)) over z and utiliz-
ing the mixed boundary condition equation (2.6), we find
that φ(x) obeys:

d2

dx2
φ(x) +

8πeσ0

εwD
e
−

(
eφ(x,z=D/2)

kBT

)
=

∓
8πecB
εwD

∫ D/2

0

dze
∓

(
eφ(x,z)
kBT

)
. (2.11)

It follows from equation (2.6) that, far from the charged
rods, the variation δφ of the electrostatic potential across

the normal z-direction of the slab is of order δφ ∼=
eσcD

εw
. If

D

lc
� 1, as indeed holds when σc is small enough recalling

that lc = 1/σclb, then eδφ is small compared to kBT ,
and the normal variation of the potential can be neglected
in equation (2.11). Equation (2.11) then reduces to an
ordinary non-linear differential equation:

d2

dx2
φ(x) +

8πeσ0

εwD
e
−
eφ(x)
kBT ∼= ∓

4πe

εw
cBe
∓
eφ(x)
kBT . (2.12)

Equation (2.12) actually only holds provided we are at
least a distance D away from the surfaces of the charged
rods since near the rods there is obviously a rapid normal
variation of the potential.

To find the boundary conditions near x = ±R/2
for the simplified differential equation (2.12), recall that

Riso =
ξ

2
lc, so Riso is large compared to D in the region

of interest. Let ∆ (of order D) be the distance away from
the rod center beyond which equation (2.12) starts to hold.
Applying Gauss’ Law to a rectangular box of width ∆ and
height D surrounding a rod, it follows that:

d

dx
φ(−R/2 +∆/2) ≈

2πλ∗

εwD
(2.13)

with a similar condition near x = R/2. Here, λ∗ is the
effective charge per unit length of the rods, including
cationic lipids located within a distance ∆ of the rods.
We will show below that the width of the strip of cationic
lipids near a rod is of order

√
Dlc. We are assuming that

the Chapman length is large compared to ∆ (and thus D)

so the number of cationic lipids within a distance ∆ of the
rods must be modest and we will take λ∗ ∼= λ. Finally, for

R spacings in the interesting regime around Riso =
ξ

2
lc,

R is large compared to D so equation (2.13) simplifies to:

d

dx
φ(−R/2) ≈

2πλ

εwD
· (2.14)

The PB free energy, equation (2.7), simplifies for
D

lc
� 1

to

F =
kBT

b

(
1−

R

Riso

)
[ln(cB/c0)− 1]

+
kBT

b

(
R

Riso

)
[ln(σ0/σL)− 1]

−
kBT

b
+RDkBT

(
cB +

2σ0

D

)
e
− eφ
kBT + λφ(R/2)

(excess DNA) (2.15)

F =
kBT

b

(
R

Riso
− 1

)
[ln(cB/c0)− 1]

+
kBT

b

(
R

Riso

)
[ln(σ0/σL)− 1]

−
kBT

b
+RDkBT

(
2σ0

D
e
− eφ
kBT −cBe

eφ
kBT

)
+λφ(R/2)

(excess liposome) (2.16)

as shown in the appendix. We are now in a position to
apply this formalism, which we will do first for the case of
excess DNA in the next section.

3 Excess DNA

For the case of excess DNA (and hence of positive counter-
ions inside the lipoplexes) we should take the minus sign
in equation (2.12) which can then be rearranged as:

d2

dx2
φ(x) ∼= −

4πe

εw

(
cB +

2σ0

D

)
e
−
eφ(x)
kBT . (3.1)

This equation is actually well-known from the study of
electrostatic interactions between charged plates in salt-
free solution and we will closely follow that analysis [19].
The appropriate solution of equation (3.1) is:

φ(x) = φ+
kBT

e
log(cos2(κx)) (3.2)

with φ an integration constant. The physical meaning of
this constant is that of the voltage difference between the
bulk solution and a point inside the lipoplex halfway be-
tween two rods (i.e. x = 0). The parameter κ in equa-
tion (3.2) has units of L−1 and is the effective Debye pa-
rameter for the combined screening action of counter-ions
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and cationic lipids. Equation (3.2) is a solution of equa-
tion (3.1) under the condition that

κ2 ≡ 2πlB

(
cB +

2σ0

D

)
e
−

eφ
kBT . (3.3)

Imposing the boundary condition equation (2.14) on equa-
tion (3.2) requires the Debye parameter to obey:

κ tan(κR/2) ≈
πξ

D
· (3.4)

There are two interesting limits for treating equation (3.4).
For ξR� D the solution of equation (3.4) is:

κ ≈
π

R
−

2D

ξR2
· (3.5)

The screening length κ−1 is thus of order the spacing be-
tween the rods. Using equation (3.5) in equation (3.2), it
follows that the voltage drop between the rod surface and
the area in between the rods is large compared to kBT/e.
The cationic lipids and the counter-ions are largely con-
fined to the regions near the rods. For the present calcu-
lation with R� D, we in fact are in this regime, but it is
useful to look also at the case ξR � D. In that case, we
find a Debye parameter κ ≈

√
ξ/RD from equation (3.5),

while the voltage difference is of order kBT/e, and the
surface charge density is nearly uniform. The cross-over
distance D/ξ between the two regimes can be interpreted
as the width of the strip of cationic lipids surrounding a
rod. In terms of the Chapman length, this width is of order√
Dlc, the geometrical mean of the layer spacing and the

Chapman length. Recall that for charged plates the Chap-
man length itself is the width of the condensed layer. We
thus could interpret

√
Dlc as a “Chapman length” for the

reduced dimensionality problem of a charged line in the
presence of a plate with mobile charges.

We can use equation (3.5) in equation (3.3) to find the
potential drop:

φ ∼=
kBT

e
ln

(
2lBR

2

π

(
cB +

2σ0

D

))
· (3.6)

The potential φ(R/2) at the surface of the rods is found
by integrating the PB equation:

φ(R/2) =

−
kBT

e
ln

(
πλ2

2D2kBTεw(cB + 2σ0/D)
+ e−eφ/kBT

)
.

(3.7)

Using equations (3.3–3.7) in the expression for the free
energy equation (2.15), gives:

F (R) =
kBT

b

(
1−

R

Riso

)
[ln(cB/c0)− 1]

+
kBT

b

(
R

Riso

)
[ln(σ0/σL)− 1]−

kBT

b

+
πDkBT

2RlB
+
kBT

b
ln

(
πξ2

2lBD2(cB + 2σ0/D)

)
· (3.8)

The only unknown left in equation (3.8) is the parameter

σ0. Using equation (3.2) in equations (2.3, 2.4), and κ ≈
π

R
as is appropriate in the ξR� D limit, we find

σ0/σc ≈
πD

2ξR
eeφ/kBT . (3.9)

Eliminating the voltage difference φ by inserting equa-
tion (3.6) provides the following self-consistency condition:

σ0 ≈
DcB/2

Riso/R− 1
· (3.10)

Note that σ0 diverges at the isoelectric point R = Riso.
The in-out voltage difference also diverges at the isoelec-
tric point:

eφ/kBT = ln

(
ξRcB/πσc

Riso/R− 1

)
· (3.11)

Using equation (3.10) in equation (3.8) gives the free en-
ergy:

F (R) =
kBT

b

[
ln

(
πξ

2D2c0b

)
− 2

]
+
π

2

DkBT

lBR

+
kBT

b

{(
1−

R

Riso

)
ln

(
1−

R

Riso

)
+

R

Riso
ln

(
R

Riso

)}
+ const R. (3.12)

Terms linear in R play no role since they do not contribute
to the line energy τcomplex(R) – or rather the DNA chem-
ical potential (see Eq. (2.8)). Note that F (R) does not
depend on cB.

From equation (2.8) we find for the line energy for
introducing a rod:

τcomplex(R) =
kBT

b

[
ln

(
πξ

2D2c0b

)
− 2

]
+
πDkBT

lBR
+
kBT

b
ln

(
1−

R

Riso

)
· (3.13)

The first term of equation (3.13) is the “self” energy per
unit length of an isolated rod inside the complex. Note
that it is of order kBT times the number density 1/b of
counter-ions, as claimed in the introduction, and that it
does not depend on the charge per unit area σc of the
lipid surface. The second term can be identified as the
contribution to the line energy from the electrostatic re-
pulsion between two rods at the isoelectric point, as shown
in the earlier paper by a different method. It is just the
2-D analog of the Langmuir equation for the electrostatic
repulsion between charged plates [20]. Note that it is less
than the first term by a factor D/Rξ which is small com-
pared to one, so electrostatic rod-rod repulsion between
rods will not play a dominant role in setting the value of
R. The third term in equation (3.13) is of central impor-
tance: it derives from the third term in equation (3.12) for
the free energy. To interpret this contribution physically,
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note that
1

b

(
1−

R

Riso

)
is the number of extra counter-

ions per unit length of chain which must be introduced
into the lipoplex to maintain charge neutrality when we
reduce R below Riso. The first part of this term in equa-
tion (3.12) is then clearly the translational entropy gain
obtained upon introducing these extra counter-ions into
the complex. The second part of the third term in equa-
tion (3.12) can be interpreted as the loss in translational
entropy of counter-ions and of mobile cationic lipids if we
reduce the spacing between rods. Taken together the third
term of equation (3.12) has the form of a mixing entropy;
note that it is minimized by R = (1/2)Riso.

Thermodynamic stability of the complex requires that
τcomplex is the line energy of a chain in solution. The bulk
solution is modeled as a set of long, parallel chains with
a charge per unit length −λ and a volume fraction ΦDNA
(so ΦDNA = 0 marks the isoelectric point). The PB free
energy of such a chain was computed by Lifson and
Katchalsky [21]. In the limit of low volume fractions ΦDNA
they found:

τsolution =
kBT

b

{
ln

(
2(1− ξ)2

πc0bD2ξ

)
− 1

}
+
kBT

bξ

{
1

2
lnΦDNA − 2 ln(1− ξ)− ξ

}
. (3.14)

Equating τsolution to τlipoplex gives the following self-
consistency condition on the DNA-DNA spacing R∗:(

1−
R∗

Riso

)
= (ΦDNA)

1
2ξ

× exp

{
−

[
ln

(
π2ξ2

4(1−ξ)2

)
+

2

ξ
ln(1−ξ)

]
−
πD

ξR∗

}
·

(3.15)

For R large compared to D, the second term in the expo-
nent on the right hand side (due to the rod-rod repulsion)
is small compared to the first term and we obtain:(

1−
R∗

Riso

)
∼= (ΦDNA)

1
2ξ

× exp

{
−

[
ln

(
π2ξ2

4(1− ξ)2

)
+

2

ξ
ln(1− ξ)

]}
(3.16)

which is equation (1.1) of the introduction.
As we approach the isoelectric point, by reducing the

volume fraction of DNA in solution, the separation be-
tween the rods approaches the isoelectric separation as a
steep power law of the DNA volume fraction. This curi-
ous result represents the competition between the entropic
free energy gain obtained upon release of counter-ions out
of the Manning layer of the chains and into the complex
– which favors introduction of more chains from the solu-
tion into the complex – and the fact that the line energy

of a chain in solution decreases as
kBT

bξ
lnΦDNA when

we approach the isoelectric point. Note that the singular
power law dependence disappears at the onset of Manning

condensation ξ = 1, presumably since without Manning
condensation there is no significant entropic gain for the
counter-ions to enter the complex and be released.

We have assumed that all of the excess positive
counter-ions stay inside the lipoplex. In actuality, a cer-
tain number can leave until the effective negative charge of
the lipoplex becomes sufficiently strong to prevent further
ionization. Applying Oosawa’s theory of charge renormal-
ization to this case [17], it is easy to show that the result-
ing ionization level Z∗ is of order Rlipo/lB, with Rlipo the
radius of the lipoplex. This degree of ionization is how-
ever very small compared to the total number of excess
counter-ions inside the complex unless we are extremely
close to the isoelectric point.

4 Excess liposome

We now must solve a different PB equation, which is
obtained by taking the plus sign on the RHS of equa-
tion (2.12):

d2

dx2
φ(x) ∼= −

4πe

εw

(
2σ0

D
e
−
eφ(x)
kBT − cBe

eφ(x)
kBT

)
. (4.1)

The general solution of equation (4.1) is an incomplete
elliptical integral, which leads to mathematical complex-
ities, but the solution simplifies in the “critical” regime
of R very close to Riso, and in the “screening” regime at
small but finite values of (R/Riso − 1).

4.1 Critical regime

Near the isoelectric point, we will use perturbation theory
with φ(x) = φ0(x) + φ1(x) + . . . to solve equation (4.1).
The lowest order term, φ0(x), is the solution of the PB
equation right at the isoelectric point – where cB = 0
– while φ1(x) is the lowest order correction term for fi-
nite values of the bulk concentration cB of counter-ions.
The dimensionless expansion parameter of the perturba-
tion theory will actually turn out to be (R/Riso − 1).

(i) Zero order

The solution of the PB equation (4.1) for cB = 0 is found
by setting cB = 0 in equation (3.1):

φ0(x) = φ+
kBT

e
log(cos2(κx)). (4.2)

The Debye parameter is given by:

κ2 ≡
4πlBσ0

D
e
−

eφ
kBT . (4.3)

To satisfy the boundary conditions at the surface of the

rods, we recover the condition κ ≈
π

R
−

2D

ξR2
. Using this
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in equation (4.3), we find for the voltage difference φ:

φ ≡
kBT

e
ln

(
4R2lBσ0

πD

)
· (4.4)

To determine explicitly the parameters σ0 and φ, we need
however the first-order correction.

(ii) First order

The first order correction is found by linearizing the PB
equation (4.1) around φ0(x):

d2

dx2
φ1(x) ∼=

2κ2

cos2(κx)
φ1(x) +

4πecBe
eφ
kBT

εw

 cos2(κx)

(4.5)

where we have used equation (4.2). The boundary condi-

tions for equation (4.5) at the rod positions are
d

dx
φ1(x =

±R/2) = 0, since the zero’th order solution already ac-
counts for the rod charges. We also must demand that
φ1(x) vanishes for cB = 0 since in that limit φ(x) must re-
duce to φ0(x). The appropriate solution of equation (4.5)
has the general form:

φ1(x) =

4πecBe
eφ
kBT

εwκ2

 f(κx) (4.6)

where the function f(y) must obey the following, param-
eter-free, differential equation:

d2

dy2
f(y)−

2

cos2(y)
f(y) = cos2(y). (4.7)

We must solve equation (4.7) under the boundary condi-

tions
d

dy
f(±π/2) = 0.

The solution of equation (4.7) can be obtained numeri-
cally but the only properties of the solution we really need
for the following can be demonstrated analytically. They
are:
(a) Near y = π/2, f(y) vanishes as

f(y) ∼=
1

3
(π/2− y)2 ln(π/2− y),

while a similar condition holds at y = −π/2.
(b) ∫ π/2

−π/2

f(y)

cos2(y)
dy = −

π

4
· (4.8)

To determine σ0, we integrate the surface density of
cationic lipids to first order in the perturbation theory:

σ0

∫ R/2

−R/2
dxe
−
eφ0(x)
kBT

(
1−

eφ1(x)

kBT

)
= Rσc. (4.9)

Using equations (4.7, 4.8) in equation (4.9):

σ0
∼=
πDσc

2ξR
eeφ/kBT

(
1−

lBcBRD

2ξ
eeφ/kBT

)
. (4.10)

Using equation (4.5) to eliminate the voltage difference φ
finally gives:

σ0

σc
∼=

π

cBlBR2
iso

(
R

Riso
− 1

)
. (4.11)

The parameter σ0 now vanishes as we approach the iso-
electric point, where as on the DNA-rich side it diverged.
The potential difference

φ =
kBT

e
ln

(
4σc
DcB

(
R

Riso
− 1

))
(4.12)

still diverges, but it goes to minus infinity as we ap-
proach the isoelectric point, whereas on the DNA-rich side
it went to positive infinity. These results indicate that,
within PB theory, the isoelectric point represents a math-
ematical singularity. If we use equations (4.11, 4.12) in the
RHS of equation (4.10), we find that the small parameter
of the perturbation expansion is (R/Riso − 1).

Inserting the above results into equation (2.16) for the
free energy per rod per unit length, and using the fact
that f(y) vanishes near the rods, we find for the surface

energy γcomplex(R) =
dF (R)

dR
:

γcomplex(R) = 2σckBT

(
ln

(
σc

σL

)
− 1

)
+2σckBT ln

(
lBσ

2
c

2c0

)
+2σckBT ln

((
8π

ξ2

)(
R

Riso
−1

))
−
πDkBT

2R2lB
· (4.13)

This must be compared to the PB free energy per unit
area of a cationic liposome. The free energy per unit area
of a flat, infinite charged surface is well-known [22]. For a
charged bilayer:

γ(lip) = 2σckBT

(
ln

(
σc

σL

)
− 1

)
+ 2σckBT ln

(
lBσ

2
c

2c0

)
·

(4.14)

The first term is the entropic contribution to the free en-
ergy per unit area of an ideal mixture of cationic lipids.
The second term is the PB free energy per unit area of a
charged surface with counter-ions.

Turning a flat cationic bilayer into a collection of
spherical cationic liposomes leads to two kinds of correc-
tion terms to equation (4.14). The entropic cost per unit
area of confining half of the counter-ions inside a sphere of

radiusRlip is of order
kBT

lBRlip
. The second correction is due

to the fact that a charged sphere, like a liposome, cannot
hold on to all of its counter-ions: the liposomes must have
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an overall effective positive chargeZ∗. From the PB theory
of colloids [23], it is known that the renormalized charge
is of order Z∗ ≈ Rlip/lB, independent of the bare charge,
over a wide range of volume fractions. This “ionization”

process produces another correction term of order
kBT

lBRlip
to the surface energy. The surface energy equation (4.14)

itself is of order
kBT

lBlC
so these corrections can be neglected

for the relevant case of liposome radii large compared to
the Chapman length. The only exception is the limit of
extremely low liposome volume fractions. For liposome

volume fractions of the order of

(
σca

3

lc

)
e−a/lc or less,

the effective charge Z∗ of the liposome starts to approach
the bare charge σca

2 of the liposomes. Such levels of di-
lution are probably beyond experimental control and we
will restrict ourselves to the regime where Z∗ ≈ Rlip/lB.

Using now equation (4.14) in equation (4.13) we find
a simple result:

γcomplex(R) ∼= γ(lip) + 2σckBT ln

((
8π

ξ2

)(
R

Riso
− 1

))
−
πDkBT

2R2lB
· (4.15)

Near the isoelectric point, the surface energy of the com-
plex γcomplex(R) is, according to equation (4.15), always
less than the surface energy γ(lip) of the liposome due to
the second and third negative terms in equation (4.15).
The second term on the RHS of equation (4.15) can be
traced back to the counter-ion entropy. Note that it goes
to minus infinity at the isoelectric point and that this neg-
ative divergence is enhanced by the Manning parameter
ξ. The third term is clearly due to rod-rod repulsion. It
is smaller than the second term by an amount of order
(D/(ξRiso))

2 which is small compared to one. Direct rod-
rod interaction thus plays again only a minor role.

There is apparently no solution for the stability con-
dition γcomplex(R) = γ(lip) in the critical regime. The
immediate neighborhood of the isoelectric point is thus
unstable: the complex must absorb a non-zero amount of
lipid material until R is sufficiently large compared to Riso
to be out of the critical regime. We conclude that, on the
liposome-rich side, the parameter (R/Riso−1) will assume
a non-zero value as we approach the isoelectric point. To
find this value, we must go beyond perturbation theory.

4.2 Screening regime

To find a non-perturbative solution, note that the cationic
lipids and the extra negative counter-ions should mimic
the effects of a finite concentration of added salt at higher
concentrations (see Fig. 1c) and thereby produce an effec-
tive Debye screening length. For rod spacings large com-
pared to this Debye screening length, the screening action
should produce an electrostatic potential in the region be-
tween the rods which is (nearly) constant, and which is
(nearly) charge neutral. We will call this the “screening

regime”. We will determine below the validity criteria of
the screening regime more carefully.

Let φ be the value of the potential in the screened
region between the rods. Its value is found by looking for
solutions to equation (4.1) which are constant:

φ =
kBT

2e
ln

(
2σ0

DcB

)
· (4.16)

Alternatively, equation (4.16) can be found by demand-
ing that the positive and negative surface charge densi-
ties – respectively 2σ0 exp

(
− eφ
kBT

)
and (cB/D) exp

(
eφ
kBT

)
– are equal in magnitude to assure charge neutrality for
the lipid/coun-terion “added salt”. The Debye screening
parameter is found by linearizing equation (4.1) around φ
and looking for solutions which approach φ exponentially.
The result is that:

κ2 ∼= 8πlB

√
2σ0cB

D
· (4.17)

By comparing with the normal expression for the Debye
parameter in salt solution, we see that the geometrical

mean

√
2σ0cB

D
plays the role of the added salt concen-

tration. As before, we still must determine the constant
σ0.

To find σ0, we note that the explicit (“Gouy-
Chapman”) solution of the Poisson-Boltzmann equation
equation (4.1), near a rod at x = −R/2, which approaches
φ far from the rod is:

φ(z) = φ+
2kBT

e
log

1− tanh
(
e∆φ

4kBT

)
e−κz

1 + tanh
(
e∆φ

4kBT

)
e−κz

 (4.18)

with z = x+R/2 and ∆φ the potential drop between the
asymptotic region in between the rods and the rod surface
(there is a corresponding solution at x = R/2). We obvi-
ously must demand that the rod spacing R is large com-
pared to the Debye screening length κ−1 for this solution
to hold. The potential drop ∆φ is found by imposing the
boundary condition equation (2.14) on equation (4.18):

sinh

(
e∆φ

2kBT

)
=

πξ

κD
· (4.19)

Now recall that the average surface concentration of ca-
tions must equal σc. Integrating 2σ0 exp

(
− eφ
kBT

)
from

−R/2 to R/2 and using the above solution in equa-
tion (2.4) leads to the following result:

κ2 ∼=
16π

lCD
(1−Riso/R). (4.20)

For R � Riso, the screening length approaches a finite
value, which is approximately the geometrical mean of the
layer spacing and the Chapman length (consistent with
the result of the previous section that the width of the
strip of cationic lipids surrounding a rod is of order

√
lcD).
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The validity condition for the screening regime, κR � 1,
is then: (

R

Riso
− 1

)
�

D

4πξ2lc
· (4.21)

The parameter on the right hand side is quite small near
the isoelectric point since the Manning parameter is of
order 4-5 so the screening regime actually starts very close
to the isoelectric point. The parameter σ0 follows from
equation (4.17):

σ0/σc ∼=
2σc
cBD

(1−Riso/R)2. (4.22)

It saturates to a finite value for R large compared to Riso.
If we check for what R value equation (4.22) is equal
to equation (4.11) (for the critical regime) we find that

this takes place near

(
R

Riso
− 1

)
≈

D

ξ2lc
. Comparing this

with equation (4.21) we see that we can assume that the
cross-over between the regimes indeed takes place at this
spacing.

The free energy per rod in the screening regime is
found using equations (4.17–4.20, 4.22) in equation (2.16):

F (R) ∼=
kBT

b

(
R

Riso

)[
ln

(
2σ2

c

c0DσL

)
− 2

]
+2

kBT

b

(
R

Riso
− 1

)
ln

(
1−

Riso

R

)
+ const. (4.23)

The second term in equation (4.23) is obviously again en-
tropic. Note that for R � Riso it approaches a constant.

The corresponding free energy per unit area γ =
dF (R)

dR
,

or rather the lipid chemical potential at fixed neutral/ionic
lipid ratio, is:

γcomplex(R) ∼= γ(lip) (4.24)

+ 2σckBT

(
ln

(
4lc
eD

)
+ 2 ln

(
1−

Riso

R

)
+ 2

Riso

R

)
is the sum of three terms. The first term is the surface
energy of the liposome. The second term is the dominant
correction to γ(lip) in the limit of large R. This term can
be derived in a more intuitive manner as follows. Suppose
we compute the repulsive electrostatic disjoining pressure
Π(d) between two charged plates in a salt free solution
with a positive surface charge σc, spacing d, and with com-
pensating negative counter-ions in between. This geome-
try corresponds approximately to the charge distribution
for our case away from the rods. A well-known result of
PB theory [24] is that:

Π(d) ∼=


2σc

kBT

d
(d� lc)

πkBT

4lBd2
(d� lc).

(4.25)

If we use equation (4.25) to calculate the work per unit
area W (D) done against the repulsive disjoining pressure

in bringing the plates from d =∞ down to d = D we find

W (D) ≈ 2σckBT ln

(
lc

D

)
, which agrees with the second

term of equation (4.24). This term in the difference be-
tween γcomplex(R) and γ(lip) in the large R limit thus cor-
responds to the work done in compressing the two charged
surfaces together. Since the spacing between opposite sur-
faces of the liposome is large compared to D, we always
must pay an extra free energy price in compressing the
layers of a liposome to construct a complex.

The last two terms in equation (4.24) are entropic. Far
from the isoelectric point they cancel, but as we approach
Riso they give a negative contribution which can com-
pensate the work done by the disjoining force. Equating
γcomplex to γ(lip) gives the following stable spacing:(

R∗

Riso
− 1

)
∼=

√
eD

4lc
(4.26)

which is equation (1.2) of the introduction. Since lc is,
by assumption, large compared to D this stable spacing
is close to the isoelectric spacing. Consistency requires
that we still must be in the screening regime. Using equa-
tions (4.21, 4.26), this requirement is always satisfied for
lc larger than D.

5 Discussion

In summary, we have seen that the PB theory reproduces
a number of the qualitative features of the experiments
of Radler et al.: singular behavior in the R spacing at
the isoelectric point and saturation of the R spacing at
higher lipid concentrations. Apart from the singular be-
havior, the model also predicts that lipoplexes in the pres-
ence of excess DNA are negatively charged and that they
are positively charged in the presence of excess liposome
(see discussion at the end of Sect. 3), which is indeed ob-
served. This is encouraging but when we compare Fig-
ure 2 quantitatively with the data of reference [7] we en-
counter difficulties. The observed variation of the DNA
spacing across the isoelectric point is less sharp than Fig-
ure 2 while the magnitude of the observed jump in the
DNA spacing is significantly less than the one predicted
by equations (1.1, 1.2). A strictly quantitative compari-
son between our theory and the currently available exper-
iments in fact cannot be done since our key assumption
– Chapman lengths must be large compared to the layer
spacing – is not obeyed. A typical value for the Chapman
length of the lipoplexes is in the range of 5-10 Å while D
is of order 20 Å.

There is of course no reason why lipoplexes with lower
concentrations of cationic lipids cannot be studied to test
the theory. A key experiment would be the following. Ac-
cording to the present description, the spacing R∗ does not
represent a minimum in some effective rod-rod potential
(e.g. a deformation attraction competing with an electro-
static repulsion of the form f(R) ≈ (kBTD)/(lBR

2)). If
such a minimum did exist then R∗ would be expected to
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be independent of the charged lipid density σc. We would,
on the contrary, expect that the spacing diverges in the
limit of small σc:

R∗(σc) ∼=
1

2bσc
+

1

4b

√
eDlB

σc
(5.1)

(Eq. (1.2)). Recall that our theory is expected to work
better for small σc and large R∗ where the details of the
DNA architecture are less important so measurement of
R∗(σc) would constitute a significant test. Alternatively,
if we compare equations (1.1, 1.2), we see that the jump
in the R spacing at the isoelectric point in this same limit

should scale with Riso =
1

2bσc
itself.

The electrostatic phenomena, such as counter-ion re-
lease, discussed in this paper are certainly going to be en-
countered as well if D exceeds the Chapman length, but
there will be changes at the quantitative level. The ana-
lytical complications of the PB theory at higher cationic
lipid concentrations – both in terms of having to solve a
partial non-linear differential equation and of having to
model the architecture of DNA more accurately – neces-
sarily require extensive numerical work in this regime. A
second serious limitation of the model is the assumption
that we are in the limit of no added salt. Recent simu-
lations on the absorption of DNA on a cationic surface
indicate that in the presence of added salt the importance
of both counter-ion release and of the isoelectric point ap-
pears to be reduced [25], which might explain why the ob-
served jump at the isoelectric point is less singular than ex-
pected. Another questionable aspect of the theory is that
we assumed that the lipid bilayers were rigid. We already
mentioned that deformable lipid layer can mediate attrac-
tions [11]. In addition, repulsion between two deformable
membranes is known to produces attractive pair inter-
action between “adhesion” molecules connecting the two
membranes [26] so for deformable membranes, the electro-
static repulsion between the layers actually could produce
an effective long-range attraction between the rods. Next,
lipid membranes can adjust their thickness somewhat. It
is thus possible to vary the surface charge density of the
bilayer by adjusting the bilayer thickness, an effect we did
not account for. It should also be recalled that mean-field
theories – such as the PB theory – are sensitive to ther-
mal fluctuations at singular points in the phase diagram.
Thermal fluctuations thus could alter the dependence of
R∗ on the volume fraction of DNA or lipid near the iso-
electric point. PB theory also does not account well for
short-range correlations between the ions.

The apparent success of the theory in accounting for
the observed phenomena at the qualitative level, notwith-
standing the above mentioned limitations, would indicate
that the statistical physics of the counter-ions indeed is
of key importance for the structure of a lipoplex and that
we should not try to analyze the structure of a lipoplex in
terms of the effective rod-rod interaction.
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Appendix: Free energy

To compute the free energy per unit length per rod, first
rewrite equation (2.7) in the limit of D small compared to
R and low cationic lipid concentration where we can ne-
glect the variation of potentials and concentrations across
the normal of the layer (i.e. we assume D� lc):

F ∼= DkBT [ln(cB/c0)− 1]

×

∫ R/2

−R/2
dxc(x) + 2kBT [ln(σ0/σL)− 1]

∫ R/2

−R/2
dxσ(x)

− e

∫ R/2

−R/2
dx

[
±
Dc(x)

2
+ σ(x)

]
φ(x) +

λφ(R/2)

2
· (A.1)

Here we have used equation (2.3) to eliminate c(x) and
σ(x) from the arguments of the logarithms (the plus sign
refers to excess DNA, the minus sign to excess cationic
liposomes). Using the condition of overall charge neutral-
ity plus the requirement that the average cationic lipid
concentration equals σc, we can eliminate the first two
integrals:

F ∼= ±
kBT

b

(
1−

R

Riso

)
[ln(cB/c0)− 1]

+
kBT

b

(
R

Riso

)
[ln(σ0/σL)− 1]

− e

∫ R/2

−R/2
dx

[
±
Dc(x)

2
+ σ(x)

]
φ(x)

+
1

2
λφ(R/2). (A.2)

We can simplify equation (A.2) by using the Poisson-
Boltzmann equation in the last term, followed by a partial
integration and the use of the boundary condition equa-
tion (2.14), with the result:

F ∼= ±
kBT

b

(
1−

R

Riso

)
[ln(cB/c0)− 1]

+
kBT

b

(
R

Riso

)
[ln(σ0/σL)− 1]

−
εwD

8π

∫ R/2

−R/2
dx

(
dφ(x)

dx

)2

+ λφ(R/2). (A.3)

The Poisson-Boltzmann equation can be integrated as:

1

2

(
dφ

dx

)2

=

4πkBTe
(
cB + 2σ0

D

)(
e
−

eφ
kBT − e

−
eφ
kBT

)
εw

(excess DNA) (A.4)
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1

2

(
dφ

dx

)2

=

4πkBTe

{(
2σ0

D
e
−

eφ
kBT −cBe

eφ
kBT

)
−

(
2σ0

D
e
−
eφ
kBT −cBe

eφ
kBT

)}
εw

(excess liposome) (A.5)

with φ the potential at the midpoint x = 0. Using equa-
tions (A.4, A.5) in equation (A.3) and the condition of
charge neutrality gives:

F =
kBT

b

(
1−

R

Riso

)
[ln(cB/c0)− 1]

+
kBT

b

(
R

Riso

)
[ln(σ0/σL)− 1]

−
kBT

b
+RDkBT

(
cB +

2σ0

D

)
e
−

eφ
kBT + λφ(R/2)

(excess DNA) (A.6)

F =
kBT

b

(
R

Riso
− 1

)
[ln(cB/c0)− 1]

+
kBT

b

(
R

Riso

)
[ln(σ0/σL)− 1]

−
kBT

b
+RDkBT

(
2σ0

D
e
−

eφ
kBT − cBe

eφ
kBT

)
+λφ(R/2).

(excess liposome) (A.7)
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